Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.923
Filtrar
1.
Parasit Vectors ; 17(1): 126, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481352

RESUMO

BACKGROUND: Swimmer's itch, an allergic contact dermatitis caused by avian and mammalian blood flukes, is a parasitic infection affecting people worldwide. In particular, avian blood flukes of the genus Trichobilharzia are infamous for their role in swimmer's itch cases. These parasites infect waterfowl as a final host, but incidental infections by cercariae in humans are frequently reported. Upon accidental infections of humans, parasite larvae will be recognized by the immune system and destroyed, leading to painful itchy skin lesions. However, one species, Trichobilharzia regenti, can escape this response in experimental animals and reach the spinal cord, causing neuroinflammation. In the last few decades, there has been an increase in case reports across Europe, making it an emerging zoonosis. METHODS: Following a reported case of swimmer's itch in Kampenhout in 2022 (Belgium), the transmission site consisting of a private pond and an adjacent creek was investigated through a malacological and parasitological survey. RESULTS: Six snail species were collected, including the widespread Ampullaceana balthica, a well-known intermediate host for Trichobilharzia parasites. Shedding experiments followed by DNA barcoding revealed a single snail specimen to be infected with T. regenti, a new species record for Belgium and by extension the Benelux. Moreover, it is the most compelling case to date of the link between this neurotropic parasite and cercarial dermatitis. Additionally, an Echinostomatidae sp. and Notocotylus sp. were isolated from two other specimens of A. balthica. However, the lack of reference DNA sequences for these groups in the online repositories prevented genus- and species-level identification, respectively. CONCLUSIONS: The presence of T. regenti in Belgium might have severe clinical implications and its finding highlights the need for increased vigilance and diagnostic awareness among medical professionals. The lack of species-level identification of the other two parasite species showcases the barcoding void for trematodes. Overall, these findings demonstrate the need for a Belgian framework to rapidly detect and monitor zoonotic outbreaks of trematode parasites within the One Health context.


Assuntos
Dermatite , Schistosomatidae , Esquistossomose , Dermatopatias Parasitárias , Infecções por Trematódeos , Animais , Humanos , Infecções por Trematódeos/parasitologia , Esquistossomose/epidemiologia , Schistosomatidae/genética , Dermatite/parasitologia , Zoonoses , Dermatopatias Parasitárias/epidemiologia , Caramujos/parasitologia , Aves/parasitologia , Mamíferos
2.
Proc Biol Sci ; 291(2019): 20232665, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531401

RESUMO

Organisms that have repeatedly evolved similar morphologies owing to the same selective pressures provide excellent cases in which to examine specific morphological changes and their relevance to the ecology and evolution of taxa. Hosts of permanent parasites act as an independent evolutionary experiment, as parasites on these hosts are thought to be undergoing similar selective pressures. Parasitic feather lice have repeatedly diversified into convergent ecomorphs in different microhabitats on their avian hosts. We quantified specific morphological characters to determine (i) which traits are associated with each ecomorph, (ii) the quantitative differences between these ecomorphs, and (iii) if there is evidence of displacement among co-occurring lice as might be expected under louse-louse competition on the host. We used nano-computed tomography scan data of 89 specimens, belonging to four repeatedly evolved ecomorphs, to examine their mandibular muscle volume, limb length and three-dimensional head shape data. Here, we find evidence that lice repeatedly evolve similar morphologies as a mechanism to escape host defences, but also diverge into different ecomorphs related to the way they escape these defences. Lice that co-occur with other genera on a host exhibit greater morphological divergence, indicating a potential role of competition in evolutionary divergence.


Assuntos
Parasitos , Animais , Filogenia , Aves/parasitologia , Ecologia , Interações Hospedeiro-Parasita
3.
Parasit Vectors ; 17(1): 150, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519966

RESUMO

BACKGROUND: Mosquitoes (Culicidae) are vectors for most malaria parasites of the Plasmodium species and are required for Plasmodium spp. to complete their life cycle. Despite having 16 species of mosquitoes and the detection of many Plasmodium species in birds, little is known about the role of different mosquito species in the avian malaria life cycle in New Zealand. METHODS: In this study, we used nested polymerase chain reaction (PCR) and real-time PCR to determine Plasmodium spp. prevalence and diversity of mitochondrial cytochrome b gene sequences in wild-caught mosquitoes sampled across ten sites on the North Island of New Zealand during 2012-2014. The mosquitoes were pooled by species and location collected, and the thorax and abdomens were examined separately for Plasmodium spp. DNA. Akaike information criterion (AIC) modeling was used to test whether location, year of sampling, and mosquito species were significant predictors of minimum infection rates (MIR). RESULTS: We collected 788 unengorged mosquitoes of six species, both native and introduced. The most frequently caught mosquito species were the introduced Aedes notoscriptus and the native Culex pervigilans. Plasmodium sp DNA was detected in 37% of matched thorax and abdomen pools. When considered separately, 33% of abdomen and 23% of thorax pools tested positive by nested PCR. The MIR of the positive thorax pools from introduced mosquito species was 1.79% for Ae. notoscriptus and 0% for Cx. quinquefasciatus, while the MIR for the positive thorax pools of native mosquito species was 4.9% for Cx. pervigilans and 0% for Opifex fuscus. For the overall MIR, site and mosquito species were significant predictors of Plasmodium overall MIR. Aedes notoscriptus and Cx. pervigilans were positive for malaria DNA in the thorax samples, indicating that they may play a role as avian malaria vectors. Four different Plasmodium lineages (SYAT05, LINN1, GRW6, and a new lineage of P (Haemamoeba) sp. AENOT11) were identified in the pooled samples. CONCLUSIONS: This is the first detection of avian Plasmodium DNA extracted from thoraxes of native Culex and introduced Aedes mosquito species in New Zealand and therefore the first study providing an indication of potential vectors in this country.


Assuntos
Aedes , Anopheles , Culex , Malária Aviária , Malária , Plasmodium , Animais , Malária Aviária/parasitologia , Anopheles/genética , Nova Zelândia/epidemiologia , Mosquitos Vetores/parasitologia , Culex/genética , Plasmodium/genética , Aedes/genética , Aves/parasitologia , DNA de Protozoário/genética , DNA de Protozoário/análise
4.
J Helminthol ; 98: e17, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325410

RESUMO

Corvids are highly adaptive birds that respond well to anthropogenic changes in their environment. Trematode communities of corvids were studied mainly in the 1950s through 1970s in regularly flooded parts of the Volga River delta in Russia; more recent studies and data from other regions where the corvids are in less contact with postflooding habitats are limited. Data for Corvus corax were lacking. Using our samples obtained from 1963 to 2023, we performed a large-scale analysis of trematode species composition and community structure in Corvus frugilegus, Corvus cornix, C. corax, Coloeus monedula, Pica pica, and Garrulus glandarius; all originated from the Czech Republic. We identified corvids as hosts of mutually overlapping component communities of only a few species of trematodes (Brachylecithum lobatum, Lyperosomum petiolatum, Lyperosomum longicauda, Tamerlania zarudnyi, Urogonimus macrostomus), with the presence of many rare and incidental findings of other trematode species. Only a few species used corvids as their core hosts (L. longicauda and B. lobatum). Trematode component communities in first-year birds included Prosthogonimus cuneatus, Prosthogonimus ovatus, Plagiorchis asperus, and Morishitium dollfusi due to an increased share of insects (intermediate hosts of Prosthogonimus and Plagiorchis) and snails (intermediate hosts of Morishitium) in the diet of juveniles. The trematode component communities of corvid species overlapped but were heterogeneous at the level of host individuals, likely reflecting differences in food sources related to the respective host ages and nesting sites.


Assuntos
Aves , Dicrocoeliidae , Trematódeos , Animais , Aves/parasitologia , República Tcheca , Ecossistema
5.
Acta Trop ; 253: 107154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373526

RESUMO

Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan and highly diverse blood parasites of birds that have been neglected in avian medicine. However, recent discoveries based on molecular diagnostic markers show that these pathogens often cause marked damage to various internal organs due to exo-erythrocytic development, sometimes resulting in severe and even lethal avian haemoproteosis, including cerebral pathologies. Molecular markers are essential for haemoproteosis diagnostics, but the data is limited, particularly for parasites transmitted in tropical ecosystems. This study combined microscopic and molecular approaches to characterize Haemoproteus enucleator morphologically and molecularly. Blood samples were collected from the African pygmy kingfisher Ispidina picta in Cameroon, and the parasite was identified using morphological characters of gametocytes. The analysis of partial cytochrome b sequences (cytb) identified a new Haemoproteus lineage (hISPIC03), which was linked to the morphospecies H. enucleator. Illustrations of blood stages were provided and the phylogenetic analysis showed that the new lineage clustered with five other closely related lineages belonging to the same morphospecies (hALCLEU01, hALCLEU02, hALCLEU03, hISPIC01, and hALCQUA01), with a maximum genetic distance between these lineages of 1.5 % (7 bp difference) in the 478 bp cytb sequences. DNA haplotype network was developed and identified geographic and host distribution of all lineages belonging to H. enucleator group. These lineages were almost exclusively detected in African kingfishers from Gabon, Cameroon, South Africa, and Botswana. This study developed the molecular characterization of H. enucleator and provides opportunities for diagnostics of this pathogen at all stages of its life cycle, which remains undescribed in all its closely related lineages.


Assuntos
Doenças das Aves , Haemosporida , Infecções Protozoárias em Animais , Animais , Filogenia , Ecossistema , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Aves/parasitologia , Haemosporida/genética , Citocromos b/genética
6.
J Helminthol ; 98: e1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167257

RESUMO

Cyathostoma lari is a parasite of the nasal and orbital sinuses of gulls and other hosts in Europe and Canada. Here, we provide an overview of previously published data on the prevalence and infection intensity of C. lari in gulls. Furthermore, based on our data, we analyze the spatiotemporal trends in the prevalence and intensity of infection by C. lari in Chroicocephalus ridibundus in Czechia (central Europe; data from 1964 to 2014) and compare them with those obtained from five species of gulls in Karelia (Northwest Russia; data from 2012-2020). Based on our preliminary observations, we hypothesized that C. lari is subject to a decline in certain regions, but this decline is not necessarily applicable throughout its distribution range. We found that the C. lari population crashed in specific parts of its distribution range. The reasons are unknown, but the observed population changes correspond with the diet switch of their core host in Czechia, C. ridibundus. We previously observed a diet switch in Czech C. ridibundus from earthworms (intermediate hosts of C. lari) to other types of food. This diet switch affected both young and adult birds. Nevertheless, it may not necessarily affect populations in other regions, where they depend less on earthworms collected from agrocenoses affected by agrochemicals and trampling. Correspondingly, we found that these changes were limited only to regions where the gulls feed (or fed) on arable fields. In Karelia, where arable fields are scarce, gulls likely continue to feed on earthworms and still display high infection rates by C. lari. Therefore, C. lari, a parasite of the nasal and orbital sinuses of gulls, nearly disappeared from their central European nesting grounds but is still present in better-preserved parts of its distribution range.


Assuntos
Charadriiformes , Parasitos , Animais , Charadriiformes/parasitologia , Aves/parasitologia , Europa (Continente)/epidemiologia , República Tcheca/epidemiologia
7.
Res Vet Sci ; 168: 105136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183894

RESUMO

Avian malaria is a vector-borne parasitic disease caused by Plasmodium infection transmitted to birds by mosquitoes. The aim of this systematic review was to analyze the global prevalence of malaria and risk factors associated with infection in wild birds. A systematic search of the databases CNKI, WanFang, VIP, PubMed, and ScienceDirect was performed from database inception to 24 February 2023. The search identified 3181 retrieved articles, of which 52 articles met predetermined inclusion criteria. Meta-analysis was performed using the random-effects model. The estimated pooled global prevalence of Plasmodium infection in wild birds was 16%. Sub-group analysis showed that the highest prevalence was associated with adult birds, migrant birds, North America, tropical rainforest climate, birds captured by mist nets, detection of infection by microscopy, medium quality studies, and studies published after 2016. Our study highlights the need for more understanding of Plasmodium prevalence in wild birds and identifying risk factors associated with infection to inform future infection control measures.


Assuntos
Malária Aviária , Plasmodium , Animais , Prevalência , Mosquitos Vetores/parasitologia , Animais Selvagens , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Aves/parasitologia
8.
J Helminthol ; 98: e6, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38213187

RESUMO

The Australasian harrier Circus approximans, a native of Australia, New Zealand and the South Pacific, is an opportunistic hunter of small prey, although a large part of its diet consists of carrion, mainly from roadkill. Besides a record of a single, unnamed species of capillariid nematode there have been no investigations into the parasites of Australasian harriers in New Zealand. In this study, a helminthological survey of sixty-five deceased harriers from southern New Zealand uncovered a gastrointestinal helminth fauna consisting of six parasite species. Porrocaecum circinum (Nematoda) was previously described only from fragmented females, and a redescription is presented here. Procyrnea fraseri n. sp. (Nematoda) is described, and distinguished from its congeners by its slender body shape and shorter spicules. Strigea falconis (Trematoda) is reported for the first time in New Zealand. Cladotaenia anomalis (Cestoda) and Polymorphus circi (Acanthocephala) were previously described as new species elsewhere. An unnamed species of capillariid appears to be mainly confined to North Island and is rare in South Island. Prevalence and intensity metrics are given, and DNA sequences provided to accompany new re/descriptions. Potential intermediate hosts are discussed, and the origins of the helminths and their potential for pathogenicity are considered.


Assuntos
Acantocéfalos , Cestoides , Helmintos , Nematoides , Espirurídios , Trematódeos , Feminino , Animais , Nova Zelândia , Nematoides/genética , Helmintos/genética , Aves/parasitologia
9.
J Wildl Dis ; 60(1): 105-115, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909407

RESUMO

In a 2-yr study on prevalence of Haemosporidia in an avian community in Ithaca, New York, USA, we tested the hypothesis that apparent seasonal variation in prevalence is influenced by the detection protocol. We confirmed a higher detection of Haemosporidia using a molecular diagnosis technique (PCR) than by microscopy; this further increased when the PCR test was triplicated. Microscopic examination and PCR techniques have different specificity and sensitivity and therefore different probabilities of detecting hemoparasites. Birds with chronic infections or sampled during winter often have very low parasitemia, and such infections may be missed by microscopy but detected by PCR. Haemosporidian prevalence was higher during the breeding season than during the nonbreeding season regardless of the method used. Detection of Leucocytozoon spp. infection from blood smears using microscopy was challenging.


Assuntos
Doenças das Aves , Haemosporida , Plasmodium , Infecções Protozoárias em Animais , Animais , Estações do Ano , Microscopia/veterinária , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Haemosporida/genética , Aves/parasitologia , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase/métodos , Prevalência , Plasmodium/genética , Filogenia
10.
Parasitology ; 150(14): 1266-1276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072659

RESUMO

Avian haemosporidians are protozoan parasites transmitted by insect vectors that infect birds worldwide, negatively impacting avian fitness and survival. However, the majority of haemosporidian diversity remains undescribed. Quantifying this diversity is critical to determining parasite­host relationships and host-switching potentials of parasite lineages as climate change induces both host and vector range shifts. In this study, we conducted a community survey of avian haemosporidians found in breeding birds on the Davis Mountains sky islands in west Texas, USA. We determined parasite abundance and host associations and compared our results to data from nearby regions. A total of 265 birds were screened and infections were detected in 108 birds (40.8%). Most positive infections were identified as Haemoproteus (36.2%), followed by Plasmodium (6.8%) and Leucocytozoon (0.8%). A total of 71 haemosporidian lineages were detected of which 39 were previously undescribed. We found that regional similarity influenced shared lineages, as a higher number of lineages were shared with avian communities in the sky islands of New Mexico compared to south Texas, the Texas Gulf Coast and central Mexico. We found that migratory status of avian host did not influence parasite prevalence, but that host phylogeny is likely an important driver.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Texas/epidemiologia , Haemosporida/genética , Aves/parasitologia , Filogenia , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia
11.
Parasitol Res ; 123(1): 61, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112785

RESUMO

Species of the genus Contracaecum (Family Anisakidae) exhibit a broad host and geographical distribution, parasitizing aquatic organisms such as piscivorous birds and mammals as their definitive hosts. Several Contracaecum species have been reported parasitizing cormorants (Family: Phalacrocoracidae) in South America. The objective of this study was to highlight phylogenetic relationships between Contracaecum species parasitizing cormorants based on both molecular analyses and the papillae arrangement on the male tail. Some Contracaecum species parasitizing Red-legged cormorants from the Ría Deseado (RD), and other nematodes parasitizing eight Neotropic cormorants from San Miguel del Monte lagoon (SMML), Argentina, were collected and analyzed. Both morphological and phylogenetic analyses allowed us to recognize two species: Contracaecum chubutensis parasitizing Phalacrocorax gaimardi, and Contracaecum australe parasitic in Phalacrocorax brasilianus. According to the obtained sequences (mtDNA cox2, ITS1, ITS2, and SSrRNA), Contracaecum sp. parasitizing P. gaimardi exhibited concordance with the previously reported C. chubutensis parasitizing P. atriceps from Bahía Bustamante, Chubut province. Likewise, Contracaecum sp. isolates parasitizing P. brasilianus showed concordance with C. australe from Chile. Besides, the papillae arrangement on the male tail allowed us to understand the interspecific and genetic relationships between the Contracaecum species. The analyses confirm that C. chubutensis specimens parasitizing P. gaimardi from RD present a new host record for the species, whereas, those C. australe specimens parasitizing P. brasilianus from SMML provide a new geographical record for the species and the extension of its distribution range. Present results also confirm the inland and marine distribution of C. australe and C. chubutensis, respectively.


Assuntos
Ascaridoidea , Doenças das Aves , Animais , Masculino , Argentina , Doenças das Aves/parasitologia , Aves/parasitologia , Chile , Filogenia
12.
Syst Parasitol ; 101(1): 8, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127230

RESUMO

Members of the genus Microphallus Ward, 1901, are endoparasites mainly of birds and mammals distributed worldwide. Unencysted metacercariae of Microphallus sp., were collected from the mesoglea of ctenophores of the genus Pleurobrachia Fleming; adult digeneans were recovered from the intestines of Eudocimus albus Linnaeus (Threskiornithidae) and Buteogallus urubitinga Gmelin (Accipitridae), in four locations from southeastern Mexico. Adult specimens were identified as M. basodactylophallus (Bridgman, 1969) based on the following features: body pyriform entirely covered by minute spines, prepharynx short, oesophagus very long, caeca short and widely divergent, testes slightly symmetrical and excretory vesicle short and V-shaped. Sequences from D1-D3 domain of the large subunit of ribosomal DNA (LSU) were generated, aligned, and compared with those of congeneric species available in GenBank. Phylogenetic analyses indicated that the metacercariae and adults formed a clade together with an isolate identified as M. basodactylophallus from Florida, USA (GenBank: AY220628). The intraspecific genetic divergence among isolates was low ranged from 0.0% to 0.6%, allowing the link between the two stages of the life cycle. We observed phenotypic plasticity in the morphological traits of M. basodactylophallus adults in definitive hosts (mammals and birds) throughout the distribution, which ranged from the USA to southeastern Mexico. Finally, the unencysted metacercariae identified as M. basodactylophallus represent the first report of a microphallid in ctenophores.


Assuntos
Aves , Ctenóforos , Parasitos , Trematódeos , Animais , Aves/parasitologia , Larva , Metacercárias/genética , México , Filogenia , Especificidade da Espécie , Trematódeos/genética
13.
Parasit Vectors ; 16(1): 395, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37915080

RESUMO

BAKGROUND: Vector-borne diseases affecting humans, wildlife and livestock have significantly increased their incidence and distribution in the last decades. Because the interaction among vectors-parasite-vertebrate hosts plays a key role driving vector-borne disease transmission, the analyses of the diversity and structure of vector-parasite networks and host-feeding preference may help to assess disease risk. Also, the study of seasonal variations in the structure and composition of vector and parasite communities may elucidate the current patterns of parasite persistence and spread as well as facilitate prediction of how climate variations may impact vector-borne disease transmission. Avian malaria and related haemosporidian parasites constitute an exceptional model to understand the ecology and evolution of vector-borne diseases. However, the characterization of vector-haemosporidian parasite-bird host assemblages is largely unknown in many regions. METHODS: Here, we analyzed 5859 female mosquitoes captured from May to November in five localities from southwestern Spain to explore the composition and seasonal variation of the vector-parasite-vertebrate host network. RESULTS: We showed a gradual increase in mosquito abundance, peaking in July. A total of 16 different haemosporidian lineages were found infecting 13 mosquito species. Of these assemblages, more than 70% of these vector-parasite associations have not been described in previous studies. Moreover, three Haemoproteus lineages were reported for the first time in this study. The prevalence of avian malaria infections in mosquitoes varied significantly across the months, reaching a maximum in November. Mosquito blood-feeding preference was higher for mammals (62.5%), whereas 37.5% of vectors fed on birds, suggesting opportunistic feeding behavior. CONCLUSION: These outcomes improve our understanding of disease transmission risk and help tovector control strategies.


Assuntos
Doenças das Aves , Culicidae , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Animais , Humanos , Feminino , Culicidae/parasitologia , Malária Aviária/parasitologia , Mosquitos Vetores/parasitologia , Aves/parasitologia , Vertebrados , Doenças das Aves/parasitologia , Mamíferos
14.
Parasitol Res ; 122(12): 3063-3075, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907627

RESUMO

Vector-transmitted haemosporidians are among the most common parasites in birds, but our knowledge of the inter-specific patterns of infection rates and the parasite community composition is far from complete because of the unequal distribution of the screening effort across bird families and genera. To assess infection rates and the diversity of haemosporidians from the genera Plasmodium, Haemoproteus, and Leucocytozoon in marsh terns, which represent poorly explored in this regard genus of the family gulls, terns, and skimmers (Laridae), we screened two species: the Whiskered Tern (Chlidonias hybrida) and the Black Tern (Chlidonias niger). We sampled these long-distance migratory birds on breeding grounds: the Whiskered Tern in south-central Poland and north-central Ukraine, and the Black Tern-in north-central Ukraine. We found that birds from both species were infected only sporadically, with prevalence at the population level not exceeding 3.4%. Only parasites from the genera Plasmodium and Leucocytozoon were detected. There was neither an inter-specific difference nor a difference between populations of the Whiskered Tern in infection rates. In total, we registered three lineages-one Plasmodium and two Leucocytozoon-that were previously recorded in other bird species, and two unidentified Plasmodium infections. One of the lineages (Leucocytozoon LARCAC02) represents a specialist parasite with the host range restricted to larids and geographic range restricted to Poland, and two others (Plasmodium SGS1 and Leucocytozoon CIAE02) represent generalist parasites with very broad host and geographic ranges. This study reinforces the existing evidence that terns host parasites from genera Haemoproteus, Plasmodium, and Leucocytozoon only sporadically.


Assuntos
Doenças das Aves , Charadriiformes , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Humanos , Animais , Parasitos/genética , Áreas Alagadas , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , DNA de Protozoário , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
15.
Parasitology ; 150(11): 1040-1051, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37859396

RESUMO

The distribution of parasites is shaped by a variety of factors, among which are the migratory movements of their hosts. Israel has a unique position to migratory routes of several bird species leaving Europe to winter in Africa, however, detailed studies on the parasite fauna of birds from this area are scarce. Our study investigates occurrence and distribution of sibling species among Contracaecum rudolphii complex in Phalacrocorax carbo sinensis from Italy and Israel, to acquire further information on the geographical range of these species to gain deeper knowledge on the ecology of these parasites and their bird host. A total of 2383 Contracaecum were collected from the gastric mucosa of 28 great cormorants (18 from Israel and 10 from Italy). A subsample was processed for morphological analyses in light and scanning electron microscopy (SEM), and for molecular analyses through amplification and sequencing of the ITS rDNA and the cox2 mtDNA, and through PCR-RFLP. All the 683 Contracaecum subjected to molecular identification belonged to C. rudolphii s.l., (300 C. rudolphii A and 383 C. rudolphii B). SEM micrographs provided, for the first time, details of taxonomic structures in male specimens from both sibling species, and the first SEM characterization of C. rudolphii B. This work presents the first data on the occurrence of sibling species of C. rudolphii in Israel and provides additional information on the distribution of C. rudolphii A and B in Italy, confirming the high prevalence and intensity of infection observed in Ph. carbo sinensis from other Italian areas.


Assuntos
Ascaridoidea , Doenças das Aves , Animais , Masculino , Israel/epidemiologia , DNA Ribossômico/química , Polimorfismo de Fragmento de Restrição , Itália , Ascaridoidea/genética , Aves/parasitologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia
16.
Parasit Vectors ; 16(1): 369, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853399

RESUMO

BACKGROUND: Although haemosporidian parasites may cause considerable health and economic problems in aviaries, there is limited understanding of the vectors transmitting them. Mosquito-borne Plasmodium species are responsible for the deaths of numerous exotic (= immunologically naïve) birds in zoos every year, while native birds are adapted to the parasites and largely protected by an effective immune response. METHODS: Mosquitoes were collected in bird/animal parks, wetlands and private gardens in various regions of Germany from 2020 to 2022. Females were pooled with up to 10 specimens according to taxon, location and date. Extracted DNA was screened for avian Haemosporida-specific mitochondrial rDNA using real-time polymerase chain reaction (PCR). Positive samples were amplified by a Plasmodium/Haemoproteus-specific nested PCR targeting the partial cytochrome b gene, followed by sequencing of the PCR product for species identification. Sequences were checked against GenBank and MalAvi databases. RESULTS: PCR of 2633 pools with 8834 female mosquitoes signalled infection with Plasmodium in 46 pools and with Haemoproteus in one pool. Further amplification and sequencing demonstrated the occurrence of Haemoproteus majoris lineage PARUS1 (n = 1) as well as several Plasmodium species and lineages, including Plasmodium relictum SGS1 (n = 16) and GRW11 (n = 1), P. matutinum LINN1 (n = 13), P. vaughani SYAT05 (n = 10), P. circumflexum TURDUS01 (n = 3), P. cathemerium PADOM02 (n = 1) and Plasmodium sp. SYBOR02 (n = 1) and PLOPRI01 (n = 1). The infections were detected in Culex pipiens sensu lato (n = 40), Culiseta morsitans/fumipennis (n = 6) and Aedes cinereus/geminus (n = 1). CONCLUSIONS: Although the overall Plasmodium minimum infection rate (5.2) appears to be low, the results demonstrated not only the ongoing circulation of Plasmodium parasites in the German mosquito population, but also the occurrence of eight distinct Plasmodium lineages, with three of them (PADOM02, SYBOR02, PLOPRI01) being detected in Germany for the first time. This study highlights the importance of conducting mosquito-borne pathogen surveillance studies simultaneously targeting vectors and vertebrate hosts, as certain species may be detected more readily in their vectors than in their vertebrate hosts, and vice versa.


Assuntos
Aedes , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Feminino , Animais , Mosquitos Vetores/parasitologia , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , Malária Aviária/parasitologia
17.
Parasitol Res ; 122(12): 2967-2975, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787788

RESUMO

Haemosporidian parasites that infect birds (Apicomplexa: Haemosporida) are blood parasites that require an invertebrate host (vector) and a vertebrate host for their lifecycle and cause malaria-like diseases. This group of parasites has provided valuable insights into host specificity, virulence, and parasite dispersal. Additionally, they have played a significant role in reshaping our understanding of the evolutionary history of apicomplexans. In order to accurately identify species and to address phylogenetic questions such as the timing of the haemosporidian radiation, the use of a sufficiently large genetic data set is crucial. However, acquiring this genetic data poses significant challenges. In this research, a sensitive nested PCR assay was developed. This assay allows for the easy amplification of complete mitochondrial genomes of haemosporidian parasites in birds, even during the chronic stage of infection. The effectiveness of this new nested PCR assay was evaluated using blood and tissue samples of birds with verified single parasite infections from previous studies. The approach involves amplifying four overlapping fragments of the mitochondrial genome and requires DNA extracts from single-infected samples. This method successfully amplified the complete mitochondrial genomes of 24 distinct haemosporidian parasite lineages found in various bird species. This data is invaluable for conducting phylogenetic analyses and accurately defining species. Furthermore, this study proposes the existence of at least 15 new haemosporidian parasite species based on the genetic information obtained. Data regarding pGRW04, previously categorized as Plasmodium relictum like pSGS1 and pGRW11, indicates that the pGRW04 lineage is actually a separate, hidden Plasmodium species.


Assuntos
Doenças das Aves , Genoma Mitocondrial , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Animais Selvagens/genética , Parasitos/genética , Filogenia , Doenças das Aves/parasitologia , Aves/parasitologia , Plasmodium/genética , Haemosporida/genética , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/parasitologia
18.
Int J Parasitol ; 53(14): 787-796, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37467874

RESUMO

Avian blood parasites, from the genera Plasmodium, Haemoproteus and Leucocytozoon, are predicted to alter their range and prevalence as global temperatures change, and host and vector ranges shift. Understanding large-scale patterns in the prevalence and diversity of avian malaria and malaria-like parasites is important due to an incomplete understanding of their effects in the wild, where studies suggest even light parasitaemia can potentially cause rapid mortality, especially in naïve populations. We conducted phylogenetically controlled analyses to test for differences in prevalence and lineage diversity of haemoparasite infection (for Plasmodium, Haemoproteus and Leucocytozoon) in and between resident and migratory species along the African-Eurasian flyway. To test whether migratory strategy or range size drives differences in parasite prevalence and diversity between resident and migrant species, we included three categories of resident species: Eurasian only (n = 36 species), African only (n = 41), and species resident on both continents (n = 17), alongside intercontinental migrants (n = 64), using a subset of data from the MalAvi database comprising 27,861 individual birds. We found that species resident on both continents had a higher overall parasite diversity than all other categories. Eurasian residents had lower Plasmodium diversity than all other groups, and both migrants and species resident on both continents had higher Haemoproteus diversity than both African and Eurasian residents. Leucocytozoon diversity did not differ between groups. Prevalence patterns were less clear, with marked differences between genera. Both Plasmodium and Leucocytozoon prevalence was higher in species resident on both continents and African residents than in migrants and Eurasian residents. Haemoproteus prevalence was lower in Eurasian residents than species resident on both continents. Our findings contrast with previous findings in the North-South American flyway, where long-distance migrants had higher parasite diversity than residents and short-distance migrants, although we found contrasting patterns for parasite diversity to those seen for parasite prevalence. Crucially, our results suggest that geographic range may be more important than migratory strategy in driving parasite diversity within species along the African-Palaearctic flyway. Our findings differ between the three parasite genera included in our analysis, suggesting that vector ecology may be important in determining these large-scale patterns. Our results add to our understanding of global patterns in parasite diversity and abundance, and highlight the need to better understand the influence of vector ecology to understand the drivers of infection risk and predict responses to environmental change.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , Filogenia , Infecções Protozoárias em Animais/parasitologia
19.
Med Vet Entomol ; 37(4): 871-877, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458405

RESUMO

Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of pathogens that affect wildlife and livestock. Understanding the composition and distribution of vector species is crucial for implementing control strategies and preventing the spread of infectious diseases. This study provides a morphological and molecular characterisation of Culicoides caucoliberensis, which represents the first record for Spain, increasing the number of Culicoides species in the country to 85. A total of 213 specimens were collected using Onderstepoort-ultraviolet down-draught light traps on a rocky coastline in the Balearic Islands during two sampling periods in 2022. Phylogenetic analysis showed that C. caucoliberensis forms a monophyletic cluster within the Maritimus group. Host preferences were determined for the first time and showed propensity to feed on the European shag (Phalacrocorax aristotelis). The vector role of C. caucoliberensis for haemosporidian transmission remains unclear since molecular detection of Haemosporidians (Haemoproteus and Plasmodium) was negative for all the pools of parous and engorged females analysed. This study emphasises the importance of conducting entomofauna studies in lesser-known Mediterranean islet landscapes and highlights the need for research on vectors within the One Health framework.


Assuntos
Ceratopogonidae , Haemosporida , Parasitos , Feminino , Animais , Filogenia , Espanha , Insetos Vetores/parasitologia , Aves/parasitologia , Comportamento Alimentar
20.
Vet Parasitol Reg Stud Reports ; 43: 100904, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451760

RESUMO

Avian haemosporidian (Haemoproteus, Leucocytozoon, Plasmodium) are vector-transmitted protozoan parasites highly prevalent in various bird species. Still, their importance for bird health, species decline, or impact on rehabilitation success is underestimated. This study aimed to determine the occurrence and diversity of haemosporidian parasites after necropsies of seventy wild birds from thirty-four species of twelve taxonomic orders. Detection of avian haemosporidian DNA was evaluated using PCR amplification of the cytochrome b gene. 48.6% of all sampled birds were positive, with 24.3% positive for Plasmodium spp./Haemoproteus spp. and 44.3% for Leucocytozoon spp. Mixed infections corresponded to 20% of all tested birds. Sequencing of several selected samples revealed the infection of Plasmodium matutinum, Plasmodium relictum and different lineages of Leucocytozoon spp. This study provides a baseline description of haemosporidian infections in wild birds from a rehabilitation center in central Portugal. The results show the necessity to test and monitor possible infections that undermine recovery processes for different birds. Further research into the occurrence of these haemosporidian species in birds kept in conservation centers is needed to understand the impact on bird health.


Assuntos
Doenças das Aves , Haemosporida , Malária Aviária , Parasitos , Plasmodium , Animais , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Animais Selvagens , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Portugal/epidemiologia , DNA de Protozoário/genética , Plasmodium/genética , Aves/parasitologia , Parasitos/genética , Centros de Reabilitação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...